
  

Balanced Trees
Part One



  

Balanced Trees
● Balanced search trees are among the 

most useful and versatile data structures.
● Many programming languages ship with 

a balanced tree library.
● C++: std::map / std::set
● Java: TreeMap / TreeSet

● Many advanced data structures are 
layered on top of balanced trees.
● We’ll see several later in the quarter!



  

Where We're Going
● B-Trees (Today)

● A simple type of balanced tree developed for 
block storage.

● Red/Black Trees (Today/Thursday)
● The canonical balanced binary search tree.

● Augmented Search Trees (Thursday)
● Adding extra information to balanced trees 

to supercharge the data structure.



  

Outline for Today
● BST Review

● Refresher on basic BST concepts and runtimes.
● Overview of Red/Black Trees

● What we're building toward.
● B-Trees and 2-3-4 Trees

● Simple balanced trees, in depth.
● Intuiting Red/Black Trees

● A much better feel for red/black trees.



  

A Quick BST Review



  

Binary Search Trees
● A binary search tree is a 

binary tree with the 
following properties:

● Each node in the BST 
stores a key, and 
optionally, some auxiliary 
information.

● The key of every node in a 
BST is strictly greater 
than all keys to its left and 
strictly smaller than all 
keys to its right.

● Note: Keys and nodes are 
related but are not 
synonymous. You’ll see why 
later.
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Binary Search Trees
● The height of a binary 

search tree is the length 
of the longest path from 
the root to a leaf, 
measured in the number 
of edges.

● A tree with one node has 
height 0.

● A tree with no nodes has 
height -1, by convention.

● The height of a BST bounds 
the costs of most basic 
operations (search, insert, 
lookup, successor, max, etc.)
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Runtime Analysis
● The time complexity of all these operations 

is O(h), where h is the height of the tree.
● That’s the longest path we can take.

● In the best case, h = O(log n) and all 
operations take time O(log n).

● In the worst case, h = Θ(n) and some 
operations will take time Θ(n).

● Challenge: How do you efficiently keep 
the height of a tree low?



  

A Glimpse of Red/Black Trees



  

Red/Black Trees
● A red/black tree is a 

BST with the 
following properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees
● A red/black tree is a 

BST with the 
following properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees
● Theorem: Any red/black tree with n 

nodes has height O(log n).
● We could prove this now, but there's a much 

simpler proof of this we'll see later on.
● Given a fixed red/black tree, lookups can 

be done in time O(log n).



  

Fixing Up Red/Black Trees
● The Good News: After doing an insertion or 

deletion, we can locally modify a red/black tree 
in time O(log n) to fix up the red/black 
properties.

● The Bad News: There are a lot of cases to 
consider and they're not trivial.

● Some questions:
● How do you memorize / remember all the rules 

for fixing up the tree?
● How on earth did anyone come up with 

red/black trees in the first place?



  

Time-Out for Announcements!



  

Lecture Participation Opt-Out
● By default, lecture participation (PollEV) 

accounts for 5% of your course grade.
● If you’d like to opt out of lecture 

participation and add that extra 5% to 
your final exam, you can opt out by this 
Friday at 11:59PM.

● Check Ed for the link you can use to do 
this.



  

Problem Set 2
● Problem Set 1 is graded and solutions are now up on 

Gradescope.
● Problem Set 2 is due Thursday at 1:00PM.

● Friendly reminder for the coding component: don’t try 
doing this all in one go. Break it down into smaller, more 
easily testable pieces.

● Kai has some excellent advice about coding up advanced  
data structures; check it out!

● Remember to write beautiful code: decompose complex 
functions into multiple helpers, comment aggressively, etc.

● Stop by OH or ask on Ed if you have any questions!

https://docs.google.com/document/d/1FM6el7eMH105ppR0r4M9i-SrjaPIErQSmV2sypR2cvw/edit?usp=sharing


  

Back to CS166!



  

How did anyone come up with
red/black trees in the first place?



  

Multiway Search Trees



  

Generalizing BSTs
● In a binary search tree, each node stores a single key.
● That key splits the “key space” into two pieces, and 

each subtree stores the keys in those halves.
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Generalizing BSTs
● In a multiway search tree, each node stores an 

arbitrary number of keys in sorted order.
● A node with k keys splits the key space into k+1 

regions, with subtrees for keys in each region.
0 3 5

(-∞, 0) (0, 3) (3, 5) (5, +∞)



  

Generalizing BSTs
● In a multiway search tree, each node stores an 

arbitrary number of keys in sorted order.
 
 
 
 
 
 

● Surprisingly, it’s a bit easier to build a balanced 
multiway tree than it is to build a balanced BST. 
Let’s see how.
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Balanced Multiway Trees
● In some sense, building a balanced multiway tree isn’t 

all that hard.
● We can always just cram more keys into a single node! 

 
 
 
 
 

● At a certain point, this stops being a good idea – it’s 
basically just a sorted array. What does “balance” even 
mean here?

4131 5926 53 58 93 9723 8462



  

Balanced Multiway Trees
● What could we do if 

our nodes get too big?
● Option 1: Push the 

new key down into its 
own node.

● Option 2: Split big 
nodes in half, kicking 
the middle key up.

● Assume that, during an 
insertion, we add keys 
to the deepest node 
possible.
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Balanced Multiway Trees
● Option 1: Push keys 

down into new nodes.
● Simple to implement.
● Can lead to tree 

imbalances.
● Option 2: Split big 

nodes, kicking keys 
higher up.

● Keeps the tree 
balanced.

● Slightly trickier to 
implement.
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Balanced Multiway Trees
● General idea: Cap the maximum number of keys in a 

node. Add keys into leaves. Whenever a node gets too 
big, split it and kick one key higher up the tree.

 
 
 
 

● Advantage 1: The tree is always balanced.
● Advantage 2: Insertions and lookups are pretty fast.
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Balanced Multiway Trees
● We currently have a mechanical description of how 

these balanced multiway trees work:
● Cap the size of each node.
● Add keys into leaves.
● Split nodes when they get too big and propagate the 

splits upward.
● We currently don’t have an operational definition of 

how these balanced multiway trees work.
● e.g. “A Cartesian tree for an array is a binary tree 

that’s a min-heap and whose inorder traversal gives 
back the original array.”



  

B-Trees
● A B-tree of order b is a multiway search tree where

● each node has between b-1 and 2b-1 keys, except the root, 
which may have between 1 and 2b-1 keys;

● each node is either a leaf or has one more child than key; and
● all leaves are at the same depth.

● Different authors give different bounds on how many keys can be 
in each node. The ranges are often [b–1, 2b–1] or [b, 2b]. For the 
purposes of today’s lecture, we’ll use the range [b-1, 2b-1] for the 
key limits, just for simplicity.

… … …



  

Analyzing B-Trees



  

The Height of a B-Tree
● What is the maximum possible height of a B-tree of 

order b that holds n keys?

Intuition: The branching factor 
of the tree is at least b, so the 

number of keys per level grows 
exponentially in b. Therefore, 

we’d expect something along the 
lines of O(logb n).



  

The Height of a B-Tree
● What is the maximum possible height of a B-tree of 

order b that holds n keys?
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The Height of a B-Tree
● Theorem: The maximum height of a B-tree of order 

b containing n keys is O(logb n).
● Proof: Number of keys n in a B-tree of height h is 

guaranteed to be at least
= 1 + 2(b – 1) + 2b(b – 1) + 2b2(b – 1) + … + 2bh-1(b – 1)
= 1 + 2(b – 1)(1 + b + b2 + … + bh-1)
= 1 + 2(b – 1)((bh – 1) / (b – 1))
= 1 + 2(bh – 1) = 2bh – 1.

Solving n = 2bh – 1 yields h = logb ((n + 1) / 2), so 
the height is O(logb n). ■



  

Analyzing Efficiency
● Suppose we have a 

B-tree of order b.
● What is the worst-

case runtime of 
looking up a key in 
the B-tree?

● Answer: It 
depends on how 
we do the search!



  

Analyzing Efficiency
● To do a lookup in a 

B-tree, we need to 
determine which 
child tree to 
descend into.

● This means we need 
to compare our 
query key against 
the keys in the node.

● Question: How 
should we do this?



  

Analyzing Efficiency
● Option 1: Use a linear 

search.
● Cost per node: O(b).
● Nodes visited: O(logb n).
● Total cost:

= O(b) · O(logb n)

= O(b logb n)



  

Analyzing Efficiency
● Option 2: Use a binary 

search.
● Cost per node: O(log b).
● Nodes visited: O(logb n).
● Total cost:

= O(log b) · O(logb n)

= O(log b · logb n)

= O(log b · (log n) / (log b))
= O(log n). That’s the same as for binary 

search or a balanced BST. 
Why is that?



  

Analyzing Efficiency
● Suppose we have a

B-tree of order b.
● What is the worst-case 

runtime of inserting a 
key into the B-tree?

● Each insertion visits 
O(logb n) nodes, and in 
the worst case we 
have to split every 
node we see.

● Answer: O(b logb n).



  

Analyzing Efficiency
● The cost of an insertion in a B-tree of order b 

is O(b logb n).
● What’s the best choice of b to use here?
● Note that

      = b logb n

      = b (log n / log b)
      = (b / log b) log n.

● What choice of b minimizes b / log b?
● Answer: Pick b = e. (Or rather, b = ⌊e⌋ = 2.)

Fun fact: This is the 
same time bound 

you’d get if you used 
a b-ary heap instead 
of a binary heap for 

a priority queue.



  

2-3-4 Trees

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A 2-3-4 tree is a B-tree of order 2. Specifically:
● each node has between 1 and 3 keys;
● each node is either a leaf or has one more child than key; and
● all leaves are at the same depth.

● You actually saw this B-tree earlier! It’s the type of tree from our 
insertion example.



  

The Story So Far
● A B-tree supports

● lookups in time O(log n), and
● insertions in time O(b logb n).

● Picking b to be around 2 or 3 makes this 
optimal in Theoryland.
● The 2-3-4 tree is great for that reason.

● Plot Twist: In practice, you most often 
see choices of b like 1,024 or 4,096.

● Question: Why would anyone do that?



  

 Theoryland
IRL   



  

The Memory Hierarchy



  

Memory Tradeoffs
● There is an enormous tradeoff between speed and size 

in memory.
● SRAM (the stuff registers are made of) is fast but very 

expensive:
● Can keep up with processor speeds in the GHz.
● SRAM units can’t be easily combined together; 

increasing sizes require better nanofabrication 
techniques (difficult, expensive).

● Hard disks are cheap but very slow:
● As of 2025, you can buy a 4TB hard drive for about $85.
● As of 2025, good disk seek times for magnetic drives are 

measured in ms (about two to four million times slower 
than a processor cycle!)



  

The Memory Hierarchy
● Idea: Try to get the best of all worlds by 

using multiple types of memory.

256B - 8KB

16KB – 64KB

1MB - 4MB

4GB – 256GB

1TB+

Lots

0.25 – 1ns

1ns – 5ns

5ns – 25ns

25ns – 100ns

3 – 10ms

10 – 2000ms

L2 Cache

Main Memory

Hard Disk

Network (The Cloud) *

Registers

L1 Cache

* in some data centers, it’s
faster store all data

in RAM and access it
over the network than
to use magnetic disks!



  

External Data Structures
● Suppose you have a data set that’s way too big to fit in RAM.
● The data structure is on disk and read into RAM as needed.
● Data from disk doesn’t come back one byte at a time, but 

rather one page at a time.
● Goal: Minimize the number of disk reads and writes, not the 

number of instructions executed.

“Please give me 4KB
starting at location addr1”

1101110010111011110001…



  

Analyzing B-Trees
● Suppose we tune b so that each node in the B-tree 

fits inside a single disk page.
● We only care about the number of disk pages read 

or written.
● It’s so much slower than RAM that it’ll dominate the 

runtime.
● Question: What is the cost of a lookup in a B-tree 

in this model?
● Answer: The height of the tree, O(logb n).

● Question: What is the cost of inserting into a
B-tree in this model?
● Answer: The height of the tree, O(logb n).



  

External Data Structures
● Because B-trees have a huge branching factor, they're 

great for on-disk storage.
● Disk block reads/writes are slow compared to CPU 

operations.
● The high branching factor minimizes the number of blocks 

to read during a lookup.
● Extra work scanning inside a block offset by these savings.

● Major use cases for B-trees and their variants (B+-trees, 
H-trees, etc.) include

● databases (huge amount of data stored on disk);
● file systems (ext4, NTFS, ReFS); and, recently,
● in-memory data structures (due to cache effects).



  

Analyzing B-Trees
● The cost model we use will change our overall 

analysis.
● Cost is number of operations:

O(log n) per lookup, O(b logb n) per insertion.
● Cost is number of blocks accessed:

O(logb n) per lookup, O(logb n) per insertion.
● Going forward, we’ll use operation counts as our 

cost model, though there’s a ton of research done 
on designing data structures that are optimal from 
a cache miss perspective!



  

The Story So Far
● We’ve just built a simple, elegant, 

balanced multiway tree structure.
● We can use them as balanced trees in 

main memory (2-3-4 trees).
● We can use them to store huge quantities 

of information on disk (B-trees).
● We’ve seen that different cost models are 

appropriate in different situations.



  

So... red/black trees?



  

Red/Black Trees
● A red/black tree is a BST with 

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree 

passes through the same number of 
black nodes.

● After we hoist red nodes into 
their parents:
● Each “meta node” has 1, 2, or 3 

keys in it. (No red node has a red 
child.)

● Each “meta node” is either a leaf or 
has one more child than key. (Root-
null path property.)

● Each “meta leaf” is at the same 
depth. (Root-null path property.)

7

3 5 11

1 2 4 6 8 9 10 12

This is a
2-3-4 tree!



  

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4 

trees; they represent the structure of 2-3-4 
trees in a different way.

● Many data structures can be designed and 
analyzed in the same way.

● Huge advantage: Rather than memorizing 
a complex list of red/black tree rules, just 
think about what the equivalent operation 
on the corresponding 2-3-4 tree would be 
and simulate it with BST operations.



  

Next Time
● Deriving Red/Black Trees

● Figuring out rules for red/black trees using 
our isometry.

● Tree Rotations
● A key operation on binary search trees.

● Augmented Trees
● Building data structures on top of balanced 

BSTs.
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