

Balanced Trees
Part One

Balanced Trees
● Balanced search trees are among the

most useful and versatile data structures.
● Many programming languages ship with

a balanced tree library.
● C++: std::map / std::set
● Java: TreeMap / TreeSet

● Many advanced data structures are
layered on top of balanced trees.
● We’ll see several later in the quarter!

Where We're Going
● B-Trees (Today)

● A simple type of balanced tree developed for
block storage.

● Red/Black Trees (Today/Thursday)
● The canonical balanced binary search tree.

● Augmented Search Trees (Thursday)
● Adding extra information to balanced trees

to supercharge the data structure.

Outline for Today
● BST Review

● Refresher on basic BST concepts and runtimes.
● Overview of Red/Black Trees

● What we're building toward.
● B-Trees and 2-3-4 Trees

● Simple balanced trees, in depth.
● Intuiting Red/Black Trees

● A much better feel for red/black trees.

A Quick BST Review

Binary Search Trees
● A binary search tree is a

binary tree with the
following properties:

● Each node in the BST
stores a key, and
optionally, some auxiliary
information.

● The key of every node in a
BST is strictly greater
than all keys to its left and
strictly smaller than all
keys to its right.

● Note: Keys and nodes are
related but are not
synonymous. You’ll see why
later.

9

13

1

5

6

73

2 4

10

12

11

14

15

8

Binary Search Trees
● The height of a binary

search tree is the length
of the longest path from
the root to a leaf,
measured in the number
of edges.

● A tree with one node has
height 0.

● A tree with no nodes has
height -1, by convention.

● The height of a BST bounds
the costs of most basic
operations (search, insert,
lookup, successor, max, etc.)

9

13

1

5

6

73

2 4

10

12

11

14

15

8

Runtime Analysis
● The time complexity of all these operations

is O(h), where h is the height of the tree.
● That’s the longest path we can take.

● In the best case, h = O(log n) and all
operations take time O(log n).

● In the worst case, h = Θ(n) and some
operations will take time Θ(n).

● Challenge: How do you efficiently keep
the height of a tree low?

A Glimpse of Red/Black Trees

Red/Black Trees
● A red/black tree is a

BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees
● A red/black tree is a

BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees
● Theorem: Any red/black tree with n

nodes has height O(log n).
● We could prove this now, but there's a much

simpler proof of this we'll see later on.
● Given a fixed red/black tree, lookups can

be done in time O(log n).

Fixing Up Red/Black Trees
● The Good News: After doing an insertion or

deletion, we can locally modify a red/black tree
in time O(log n) to fix up the red/black
properties.

● The Bad News: There are a lot of cases to
consider and they're not trivial.

● Some questions:
● How do you memorize / remember all the rules

for fixing up the tree?
● How on earth did anyone come up with

red/black trees in the first place?

Time-Out for Announcements!

Lecture Participation Opt-Out
● By default, lecture participation (PollEV)

accounts for 5% of your course grade.
● If you’d like to opt out of lecture

participation and add that extra 5% to
your final exam, you can opt out by this
Friday at 11:59PM.

● Check Ed for the link you can use to do
this.

Problem Set 2
● Problem Set 1 is graded and solutions are now up on

Gradescope.
● Problem Set 2 is due Thursday at 1:00PM.

● Friendly reminder for the coding component: don’t try
doing this all in one go. Break it down into smaller, more
easily testable pieces.

● Kai has some excellent advice about coding up advanced
data structures; check it out!

● Remember to write beautiful code: decompose complex
functions into multiple helpers, comment aggressively, etc.

● Stop by OH or ask on Ed if you have any questions!

https://docs.google.com/document/d/1FM6el7eMH105ppR0r4M9i-SrjaPIErQSmV2sypR2cvw/edit?usp=sharing

Back to CS166!

How did anyone come up with
red/black trees in the first place?

Multiway Search Trees

Generalizing BSTs
● In a binary search tree, each node stores a single key.
● That key splits the “key space” into two pieces, and

each subtree stores the keys in those halves.

2

-1 4

-2 0 63

(-∞, 2) (2, +∞)

Generalizing BSTs
● In a multiway search tree, each node stores an

arbitrary number of keys in sorted order.
● A node with k keys splits the key space into k+1

regions, with subtrees for keys in each region.
0 3 5

(-∞, 0) (0, 3) (3, 5) (5, +∞)

Generalizing BSTs
● In a multiway search tree, each node stores an

arbitrary number of keys in sorted order.

● Surprisingly, it’s a bit easier to build a balanced
multiway tree than it is to build a balanced BST.
Let’s see how.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

46

45

Balanced Multiway Trees
● In some sense, building a balanced multiway tree isn’t

all that hard.
● We can always just cram more keys into a single node!

● At a certain point, this stops being a good idea – it’s
basically just a sorted array. What does “balance” even
mean here?

4131 5926 53 58 93 9723 8462

Balanced Multiway Trees
● What could we do if

our nodes get too big?
● Option 1: Push the

new key down into its
own node.

● Option 2: Split big
nodes in half, kicking
the middle key up.

● Assume that, during an
insertion, we add keys
to the deepest node
possible.

4131 5926 53 58 93 9723 84

62

4131 6226 53

58

93 9723 8459

5030

39

33

Balanced Multiway Trees
● Option 1: Push keys

down into new nodes.
● Simple to implement.
● Can lead to tree

imbalances.
● Option 2: Split big

nodes, kicking keys
higher up.

● Keeps the tree
balanced.

● Slightly trickier to
implement.

10 9920 4031 3532 34

Balanced Multiway Trees
● General idea: Cap the maximum number of keys in a

node. Add keys into leaves. Whenever a node gets too
big, split it and kick one key higher up the tree.

● Advantage 1: The tree is always balanced.
● Advantage 2: Insertions and lookups are pretty fast.

5030

39

33

10 9920 4031 3532 34

Balanced Multiway Trees
● We currently have a mechanical description of how

these balanced multiway trees work:
● Cap the size of each node.
● Add keys into leaves.
● Split nodes when they get too big and propagate the

splits upward.
● We currently don’t have an operational definition of

how these balanced multiway trees work.
● e.g. “A Cartesian tree for an array is a binary tree

that’s a min-heap and whose inorder traversal gives
back the original array.”

B-Trees
● A B-tree of order b is a multiway search tree where

● each node has between b-1 and 2b-1 keys, except the root,
which may have between 1 and 2b-1 keys;

● each node is either a leaf or has one more child than key; and
● all leaves are at the same depth.

● Different authors give different bounds on how many keys can be
in each node. The ranges are often [b–1, 2b–1] or [b, 2b]. For the
purposes of today’s lecture, we’ll use the range [b-1, 2b-1] for the
key limits, just for simplicity.

… … …

Analyzing B-Trees

The Height of a B-Tree
● What is the maximum possible height of a B-tree of

order b that holds n keys?

Intuition: The branching factor
of the tree is at least b, so the

number of keys per level grows
exponentially in b. Therefore,

we’d expect something along the
lines of O(logb n).

The Height of a B-Tree
● What is the maximum possible height of a B-tree of

order b that holds n keys?
1

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

1

2(b - 1)

2b(b - 1)

2b2(b - 1)

2bh-1(b - 1)

…

b – 1 b – 1 b – 1…

…

The Height of a B-Tree
● Theorem: The maximum height of a B-tree of order

b containing n keys is O(logb n).
● Proof: Number of keys n in a B-tree of height h is

guaranteed to be at least
= 1 + 2(b – 1) + 2b(b – 1) + 2b2(b – 1) + … + 2bh-1(b – 1)
= 1 + 2(b – 1)(1 + b + b2 + … + bh-1)
= 1 + 2(b – 1)((bh – 1) / (b – 1))
= 1 + 2(bh – 1) = 2bh – 1.

Solving n = 2bh – 1 yields h = logb ((n + 1) / 2), so
the height is O(logb n). ■

Analyzing Efficiency
● Suppose we have a

B-tree of order b.
● What is the worst-

case runtime of
looking up a key in
the B-tree?

● Answer: It
depends on how
we do the search!

Analyzing Efficiency
● To do a lookup in a

B-tree, we need to
determine which
child tree to
descend into.

● This means we need
to compare our
query key against
the keys in the node.

● Question: How
should we do this?

Analyzing Efficiency
● Option 1: Use a linear

search.
● Cost per node: O(b).
● Nodes visited: O(logb n).
● Total cost:

= O(b) · O(logb n)

= O(b logb n)

Analyzing Efficiency
● Option 2: Use a binary

search.
● Cost per node: O(log b).
● Nodes visited: O(logb n).
● Total cost:

= O(log b) · O(logb n)

= O(log b · logb n)

= O(log b · (log n) / (log b))
= O(log n). That’s the same as for binary

search or a balanced BST.
Why is that?

Analyzing Efficiency
● Suppose we have a

B-tree of order b.
● What is the worst-case

runtime of inserting a
key into the B-tree?

● Each insertion visits
O(logb n) nodes, and in
the worst case we
have to split every
node we see.

● Answer: O(b logb n).

Analyzing Efficiency
● The cost of an insertion in a B-tree of order b

is O(b logb n).
● What’s the best choice of b to use here?
● Note that

 = b logb n

 = b (log n / log b)
 = (b / log b) log n.

● What choice of b minimizes b / log b?
● Answer: Pick b = e. (Or rather, b = ⌊e⌋ = 2.)

Fun fact: This is the
same time bound

you’d get if you used
a b-ary heap instead
of a binary heap for

a priority queue.

2-3-4 Trees

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A 2-3-4 tree is a B-tree of order 2. Specifically:
● each node has between 1 and 3 keys;
● each node is either a leaf or has one more child than key; and
● all leaves are at the same depth.

● You actually saw this B-tree earlier! It’s the type of tree from our
insertion example.

The Story So Far
● A B-tree supports

● lookups in time O(log n), and
● insertions in time O(b logb n).

● Picking b to be around 2 or 3 makes this
optimal in Theoryland.
● The 2-3-4 tree is great for that reason.

● Plot Twist: In practice, you most often
see choices of b like 1,024 or 4,096.

● Question: Why would anyone do that?

 Theoryland
IRL

The Memory Hierarchy

Memory Tradeoffs
● There is an enormous tradeoff between speed and size

in memory.
● SRAM (the stuff registers are made of) is fast but very

expensive:
● Can keep up with processor speeds in the GHz.
● SRAM units can’t be easily combined together;

increasing sizes require better nanofabrication
techniques (difficult, expensive).

● Hard disks are cheap but very slow:
● As of 2025, you can buy a 4TB hard drive for about $85.
● As of 2025, good disk seek times for magnetic drives are

measured in ms (about two to four million times slower
than a processor cycle!)

The Memory Hierarchy
● Idea: Try to get the best of all worlds by

using multiple types of memory.

256B - 8KB

16KB – 64KB

1MB - 4MB

4GB – 256GB

1TB+

Lots

0.25 – 1ns

1ns – 5ns

5ns – 25ns

25ns – 100ns

3 – 10ms

10 – 2000ms

L2 Cache

Main Memory

Hard Disk

Network (The Cloud) *

Registers

L1 Cache

* in some data centers, it’s
faster store all data

in RAM and access it
over the network than
to use magnetic disks!

External Data Structures
● Suppose you have a data set that’s way too big to fit in RAM.
● The data structure is on disk and read into RAM as needed.
● Data from disk doesn’t come back one byte at a time, but

rather one page at a time.
● Goal: Minimize the number of disk reads and writes, not the

number of instructions executed.

“Please give me 4KB
starting at location addr1”

1101110010111011110001…

Analyzing B-Trees
● Suppose we tune b so that each node in the B-tree

fits inside a single disk page.
● We only care about the number of disk pages read

or written.
● It’s so much slower than RAM that it’ll dominate the

runtime.
● Question: What is the cost of a lookup in a B-tree

in this model?
● Answer: The height of the tree, O(logb n).

● Question: What is the cost of inserting into a
B-tree in this model?
● Answer: The height of the tree, O(logb n).

External Data Structures
● Because B-trees have a huge branching factor, they're

great for on-disk storage.
● Disk block reads/writes are slow compared to CPU

operations.
● The high branching factor minimizes the number of blocks

to read during a lookup.
● Extra work scanning inside a block offset by these savings.

● Major use cases for B-trees and their variants (B+-trees,
H-trees, etc.) include

● databases (huge amount of data stored on disk);
● file systems (ext4, NTFS, ReFS); and, recently,
● in-memory data structures (due to cache effects).

Analyzing B-Trees
● The cost model we use will change our overall

analysis.
● Cost is number of operations:

O(log n) per lookup, O(b logb n) per insertion.
● Cost is number of blocks accessed:

O(logb n) per lookup, O(logb n) per insertion.
● Going forward, we’ll use operation counts as our

cost model, though there’s a ton of research done
on designing data structures that are optimal from
a cache miss perspective!

The Story So Far
● We’ve just built a simple, elegant,

balanced multiway tree structure.
● We can use them as balanced trees in

main memory (2-3-4 trees).
● We can use them to store huge quantities

of information on disk (B-trees).
● We’ve seen that different cost models are

appropriate in different situations.

So... red/black trees?

Red/Black Trees
● A red/black tree is a BST with

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree

passes through the same number of
black nodes.

● After we hoist red nodes into
their parents:
● Each “meta node” has 1, 2, or 3

keys in it. (No red node has a red
child.)

● Each “meta node” is either a leaf or
has one more child than key. (Root-
null path property.)

● Each “meta leaf” is at the same
depth. (Root-null path property.)

7

3 5 11

1 2 4 6 8 9 10 12

This is a
2-3-4 tree!

Data Structure Isometries
● Red/black trees are an isometry of 2-3-4

trees; they represent the structure of 2-3-4
trees in a different way.

● Many data structures can be designed and
analyzed in the same way.

● Huge advantage: Rather than memorizing
a complex list of red/black tree rules, just
think about what the equivalent operation
on the corresponding 2-3-4 tree would be
and simulate it with BST operations.

Next Time
● Deriving Red/Black Trees

● Figuring out rules for red/black trees using
our isometry.

● Tree Rotations
● A key operation on binary search trees.

● Augmented Trees
● Building data structures on top of balanced

BSTs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

